Thug Distributed Documentation
Release 0.0.1b

Akshit Agarwal, Angelo Dell’Aera, Sebastian Poeplau

September 24, 2013

Introduction to ThugD

1.1 Architecture
1.2 Implementation.
1.3 Optimizations

Libraries Used and Install

2.1 LibrariesUsed
2.2 Installation

31 Server.
32 Worker o

41 ThugDTarBall.
42 ThugDZip

Usage
Download
Code

Indices and tables

CONTENTS

W W W W

W

Thug Distributed Documentation, Release 0.0.1b

ThugD stands for Thug Distributed Task Queuing Project. It is developed under The Honeynet Project organization
as a GSoC Project. It is a Distributed Version of the existing Thug Project.

ThugD is developed using Celery ! for Distributing tasks(URLs) among the workers. While RabbitMQ “ and Redis *
works as the brokers in it. It also uses Team Cymru Community Services * and PyDNS ° to query its services.

Please refer to Project Slot Page for more details. Stay tuned to Project Weekly Blog.

! Celery: Distributed Task Queue

2 RabbitMQ is used as the Message Broker in Celery.

3 Redis is used as the Backend Broker in Celery. It is preferred then default AMQP backend broker as it don’t create individual queues while
returning results to server.

4 Team Cymru Community Service is used for fetching country codes from IP address of the users.

5 PyDNS is used for DNS queries over Team Cymru’s IP-to-ASN service.

CONTENTS 1

https://github.com/Aki92/Thug-Distributed
https://www.honeynet.org/
http://www.google-melange.com/
http://buffer.github.io/thug/
https://github.com/Aki92/Thug-Distributed
https://www.honeynet.org/gsoc/slot3
http://gsoc2013.honeynet.org/category/project-3-thug-distributed-task-queuing
http://www.celeryproject.org/
http://www.rabbitmq.com/
http://redis.io/
http://www.team-cymru.org/Services/ip-to-asn.html
http://pydns.sourceforge.net/

Thug Distributed Documentation, Release 0.0.1b

2 CONTENTS

CHAPTER
ONE

INTRODUCTION TO THUGD

ThugD as the name suggests stands for Thug Distributed adding the Distributed functionality to the Thug project.
ThugD’s Architecture comprises of:

 Server : Containing bulk of URLSs (fed by spamtraps).

* Workers : Thug Instances (running across the globe).

Till now Thug was working like a stand-alone tool and didn’t provided any way to distribute URL analysis tasks to
different workers. For the same reason it is neither able to analyze difference in attacks to users according to their
geolocation (unless it is provided a set of differently geolocated proxies to use obviously).

But now with Thug Distributed we are be able to solve the problem. Now we have a Centralized Server which will
be connected to all the Thug instances running across the globe and will distribute URLs (according to geolocation
analysis requirements). After that the clients will consume the tasks distributed by centralized server, process them
and return back the results to the server using HpFeeds.

1.1 Architecture

1.2 Implementation

* ThugD maintains a Centralized Server which is fed up with bunch of URLs(collected from Spamtraps).

 Then it distributes these URLs into 2 different types of Queues(Generic & Geolocation based) according to the
geolocation analysis requirements.

* While on the other side whenever a Worker(client) starts the Thug Instance anywhere across the globe it will
automatically be connected to both queues(Generic and its Country Queue like: IN(India), IT(Italy)).

¢ Then if the URLs are present in the any of the connected queue they will be automatically fetched by the Thug
Instance. It will process them and return back the results to the server.

1.3 Optimizations

» Atatime 4 URLSs will be processed in PARALLEL using gevent at every Worker.

* According to Worker’s System Performance some URL’s will be automatically prefetched for later analysis, so
that workers with better performance do more work and return results fastly.

Thug Distributed Documentation, Release 0.0.1b

GENERIC
Queue

Returning results
using Redis Broker

4 Chapter 1. Introduction to ThugD

CHAPTER
TWO

LIBRARIES USED AND INSTALL

2.1 Libraries Used

e Celery : Asynchronous Task Queue based on Distributed message passing, which is perfect choice for our
implementation.

e RabbitMQ : Its the Message Broker. Handles queues in Celery with capability to handle millions of tasks
efficiently.

* Flower : Monitoring & Management tool of Celery which helps us to monitor & manage all our Thug Clients
working across the globe.

* DnsPython : Used for DNS Querying the Team Cymru Service of IP to ASN Mapping.

¢ LibRabbitMQ : This module is installed to use optimized client written in C.

2.2 Installation

1. RabbitMQ Server

> sudo apt—-get install rabbitmg-server
2. Celery
S pip install celery
3. Flower
S pip install flower
4. DnsPython
S5 pip install dnspython
5. LibRabbitMQ: Optimizing Worker

S pip install librabbitmg

Thug Distributed Documentation, Release 0.0.1b

6 Chapter 2. Libraries Used and Install

CHAPTER
THREE

USAGE

3.1 Server

Options provided by ThugD

~/thugd/src $ python run_tasks -h

Synopsis:
ThugD: Distributed Pure Python Honeyclient Implementation

Usage: python run_tasks.py [thug-options] url

Optional Arguments:
-h, —--help show this help message and exit
URL Options:

-Uu [...1, ——url [...]
-uf , —-—url-file

Enter Single/Multiple URL’s to Analyze
File containing bunch of URL’s (1l per line)

Thug Distributed Options:
—-ia, —--include-agent
—-qu [...]1, ——queue [...]

Display Thug Version

Specify Queue/Queues to route URL’s

(#Single Queue: URL’s will be routed to specified Queue,
*Multiple Queues: URL’s will be routed to ALL specified Queues)
-gf , —-—queue-file Specify File name containing Queue names (1l per line)

Thug Options:

-V, --version Display Thug Version

-u , —--useragent Select a user agent (see below for values, default: winxpie60)
-e , ——events Enable comma-separated specified DOM events handling

-w , —-—-delay Set a maximum setTimeout/setInterval delay value (in millisecond:
-n , —-—-logdir Set the log output directory

-o , ——output Log to a specified file

-r , —--referer Specify a referer

-p , ——proxy Specify a proxy (see below for format and supported schemes)
-1, —-local Analyze a locally saved page

-x, ——local-nofetch Analyze a locally saved page and prevent remotecontent fetching
-v, —-verbose Enable verbose mode

-d, —--debug Enable debug mode

-gq, —--—quiet Disable console logging

-m, —-no-cache Disable local web cache

-a, ——ast-debug Enable AST debug mode (requires debug mode)

-t , ——threshold Maximum pages to fetch

Thug Distributed Documentation, Release 0.0.1b

-E, —--extensive Extensive fetch of linked pages

-T , —-—-timeout Timeout in minutes

Plugins:

-A , -—-—adobepdf Specify the Adobe Acrobat Reader version (default:
-P, ——no—-adobepdf Disable Adobe Acrobat Reader Plugin

-S , —--shockwave Specify the Shockwave Flash version (default:

-R, ——-no-shockwave Disable Shockwave Flash Plugin

-J , —-—-javaplugin Specify the Java Plugin version (default: 1.6.0.32)
-K, —--no-javaplugin Disable Java Plugin

Classifiers:

-Q , —-urlclassifier Specify a list of additional (comma separated)

-W , —-—-Jjsclassifier Specify a list of additional (comma separated)
Available User-Agents:

winxpie60 Internet Explorer 6.0 (Windows XP)

winxpie6l Internet Explorer 6.1 (Windows XP)

winxpie70 Internet Explorer 7.0 (Windows XP)

winxpie80 Internet Explorer 8.0 (Windows XP)

winxpchrome20 Chrome 20.0.1132.47 (Windows XP)

winxpfirefoxl2 Firefox 12.0 (Windows XP)

winxpsafarib Safari 5.1.7 (Windows XP)

win2kie60 Internet Explorer 6.0 (Windows 2000)

win2kie80 Internet Explorer 8.0 (Windows 2000)

win7ie80 Internet Explorer 8.0 (Windows 7)

win71e90 Internet Explorer 9.0 (Windows 7)

win7chrome20 Chrome 20.0.1132.47 (Windows 7)

win7firefox3 Firefox 3.6.13 (Windows 7)

win7safarib Safari 5.1.7 (Windows 7)

osxl0safarib Safari 5.1.1 (MacOS X 10.7.2)

osx10chromel9 Chrome 19.0.1084.54 (MacOS X 10.7.4)

galaxy2chromel8 Chrome 18.0.1025.166 (Samsung Galaxy S II,Android 4.0.3)
galaxy2chrome25 Chrome 25.0.1364.123 (Samsung Galaxy S II,Android 4.0.3)
linuxchrome26 Chrome 26.0.1410.19 (Linux)

linuxfirefox19 Firefox 19.0 (Linux)

3.1.1 Different Methods of Distributing URL's among workers:

¢ Distributing Single URL with Default Queue (generic): By it a single URL will be put up in the generic
queue, from which worker can fetch the URL and after processing it will return back the results to server.

~/thugd/src$ python run_tasks.py -U http://www.google.com

* Single URL with Single Specified Queue(India): In it a single URL will be put up in the Specified Queue i.e.
India (geolocation based queue) and not in generic queue. Then whenever a worker from country India connects

it will automatically fetch the URL from it and do further processing on it.

~/thugd/src$ python run_tasks.py —-qu IN -U http://www.google.

com

* Single URL with Multiple Specified Queues(India, Italy, China, US): In it a single URL will be putted up in
multiple specified queues. Therefore a copy of a single URL will be put up in multiple queues and whenever
workers corresponding to that queues will be attached they will process the URLs and return back the results.

~/thugd/src$ python run_tasks.py -qu IN IT CN US -U http://www.google.com

* Multiple URL’s(Google, Twitter, Mozilla) with Single Specified Queue(India): This is a simple case where

Chapter 3. Usage

10.0.64.0)

URL classifier ru.
JS classifier rule

Thug Distributed Documentation, Release 0.0.1b

multiple URL’s are put up in a single specified queue like India in this case. So whenever workers corresponding
to India will connect URLs will get processed by them.

~/thugd/src$ python run_tasks.py —qu IN -U http://www.google.com http://www.twitter.com http://www.m

¢ Multiple URL’s(Google, Twitter, Mozilla) with Multiple Specified Queues(India, Italy, China, US): This is
the advanced distribution as here multiple URL’s will be distributed among all the specified queues. Therefore
according to this case Google, Twitter, Mozilla URL will be put up in all India, Italy, China, US queues.

~/thugd/src$ python run_tasks.py —-qu IN IT CN US -U http://www.google.com http://www.twitter.com htt;j

* Multiple URL’s from file(urls.txt) with Multiple Specified Queues from file(queues.txt): This feature was
added for reducing pain of specifying all URL’s and queues manually. By this URL’s and queues name would
be fetched from the files specified and then every URL will be put up in every queue present in the file.

~/thugd/src$ python run_tasks.py -gf queues.txt -uf urls.txt

* Running Thug with following prioritized Agents: Multiple URL’s from file(urls.txt) with Multiple Speci-
fied Queues from file(queues.txt): In it every URL will be put up in every Queue with all the agent’s specified
below one at a time, so that we can check the difference in attacks to different browsers. Therefore for a single
URL 18 URL’s will be added to a queue because there are 18 different agents specified.

~/thugd/src$ python run_tasks.py —-gf queues.txt —-uf urls.txt -ia

Agents Priority

win7chrome20
win7firefox3
win7ie90
win7safazib
osx10chromel?9
osx1l0safarib
linuxchrome?26
linuxfirefox19
win7ie80
winxpchrome20
winxpfirefoxl2
winxpie80
winxpsafarib
winxpie70
win2kie80
win2kie60
galaxy2chrome25
galaxy2chromel8

3.1.2 Run Flower(optional)
S flower

Open http://localhost:5555/ to access the tool.

3.1.3 Checking Active Queues

S sudo rabbitmgctl list_queues

3.1. Server 9

http://localhost:5555/

Thug Distributed Documentation, Release 0.0.1b

3.2 Worker

Workers are runned to help the Thug project to analyze the attacks on Clients. Please run the workers on your system
as Server is running up there in US, so that we can analyze the attacks on clients and can secure users from these
attacks.

Its a contribution to the Thug Project, so be the part of the Thug Project by running worker on your system.
Move inside the sre folder of thugd
Single Worker

~/thugd/srcs celery worker —-A ThugD.main_server.thugd -1 info -n wl

Multiple Workers

~/thugd/src$ celery multi start wl w2 w3 —-A ThugD.main_server.thugd -1 info

10 Chapter 3. Usage

CHAPTER
FOUR

DOWNLOAD

Working Project with Thug Honeyclient files integrated into it.

Download any one of them and follow the Usage commands for testing it.

4.1 ThugD Tar Ball

thugd.tar.gz

4.2 ThugD Zip

thugd.zip

11

Thug Distributed Documentation, Release 0.0.1b

12 Chapter 4. Download

CHAPTER
FIVE

Celery Configuration:
Main Server:

Finding Geolocation:
Running tasks

Calling ThugAPI functions

CODE

13

Thug Distributed Documentation, Release 0.0.1b

14 Chapter 5. Code

CHAPTER
SIX

INDICES AND TABLES

15

	Introduction to ThugD
	Architecture
	Implementation
	Optimizations

	Libraries Used and Install
	Libraries Used
	Installation

	Usage
	Server
	Worker

	Download
	ThugD Tar Ball
	ThugD Zip

	Code
	Indices and tables

